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Abstract—In this paper, we propose DE E P RL4FL, a deep 
learning fault localization (FL) approach that locates the buggy 
code at the statement and method levels by treating FL as 
an image pattern recognition problem. DE E P RL4FL does so 
via novel code coverage representation learning (RL) and data 
dependencies RL for program statements. Those two types of 
RL on the dynamic information in a code coverage matrix are 
also combined with the code representation learning on the static 
information of the usual suspicious source code. This combination 
is inspired by crime scene investigation in which investigators 
analyze the crime scene (failed test cases and statements) and 
related persons (statements with dependencies), and at the same 
time, examine the usual suspects who have committed a similar 
crime in the past (similar buggy code in the training data).

For the code coverage information, DE E P RL4FL first orders 
the test cases and marks error-exhibiting code statements, ex-
pecting that a model can recognize the patterns discriminating 
between faulty and non-faulty statements/methods. For depen-
dencies among statements, the suspiciousness of a statement is 
seen taking into account the data dependencies to other state-
ments in execution and data flows, in addition to the statement 
by itself. Finally, the vector representations for code coverage 
matrix, data dependencies among statements, and source code 
are combined and used as the input of a classifier built from a 
Convolution Neural Network to detect buggy statements/methods. 
Our empirical evaluation shows that DE E P RL4FL improves the 
top-1 results over the state-of-the-art statement-level FL baselines 
from 173.1% to 491.7%. It also improves the top-1 results over 
the existing method-level FL baselines from 15.0% to 206.3%.

Index Terms—fault localization, code coverage, representation 
learning, machine learning, deep learning

I. In t r o d u c t i o n

Finding and fixing software defects is an important process 

to ensure a high-quality software product. To reduce devel-

opers’ effort, several fault localization (FL) approaches [49] 

have been proposed to help localize the source of a defect (also 

called a bug or fault). In the FL problem, given the execution 

of test cases, an FL tool identifies the set of suspicious lines o f 
code with their associated suspiciousness scores [49]. The key 

input of an FL tool is the code coverage matrix in which the 

rows and columns correspond to the source code statements 

and test cases, respectively. Each cell is assigned with the value 

of 1 if the respective statement is executed in the respective test 

case, and with the value of 0, otherwise. In recent FL, several 

*
Corresponding Author

researchers also advocate for fault localization at method 

level [27]. FL at both levels are useful for developers.

Spectrum-based fault localization (SBFL) approaches [6 ], 

[2 0 ], [2 2 ] take the recorded lines of code that were covered 

by each of the given test cases, and assigned each line of code 

a suspiciousness score based on the code coverage matrix. 

Despite using different formulas to compute that score, the 

idea is that a line covered more in the failing test cases than 

in the passing ones is more suspicious than a line executed 

more in the passing ones. A key drawback of those approaches 

is that the same score is given to the lines that have been 

executed in both failing and passing test cases. An example is 

the statements that are part of a block statement and executed 

at the same nested level. Another example is the conditions of 

the condition statements, e.g., if, while, do, and switch.

To improve SBFL, mutation-based fault localization 

(MBFL) approaches [33], [37], [38] enhance the code coverage 

information by modifying a statement with mutation operators, 

and then collecting code coverages when executing the mu-

tated programs with the test cases. They apply suspiciousness 

score formulas in the same manner as the spectrum-based FL 

approaches on the code coverage matrix for each original 

statement and its mutated ones. Despite the improvement, 

MBFL are not effective for the bugs that require the fixes 

that are more complex than a mutation (Section II).

Machine learning (ML) and deep learning (DL) have been 

used in fault localization. DeepFL [27] computes for each 

faulty method a vector with + 2 0 0  scores in which each score 

is computed via a specific feature, e.g., a spectrum-based or 

mutation-based formula, or a code complexity metric. Despite 

its success, the accuracy of DeepFL is still limited. A reason 

could be that it uses various calculated scores from different 

formulas as a proxy to learn the suspiciousness of a faulty 

element, instead of fully exploiting the code coverage. Some 

formulas, such as the spectrum- and mutation-based formulas, 

inherently suffer from the issues as explained earlier with the 

statements covered by both failing and passing test cases.

We propose DEEPRL4FL, a fault localization approach 

for buggy statements/methods that exploits the image classi-

fication and pattern recognition capability of the Convolution 

Neural Network (CNN) [24] to apply on the code coverage 

(CC) matrix. Instead of summarizing each row in that matrix

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
DOI 10.1109/ICSE43902.2021.00067
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with a suspiciousness score, we use its full details. Importantly, 

we enhance the matrix to facilitate the application of the CNN 

model in recognizing the key characteristics in the matrix 

to discriminate more easily between faulty and non-faulty 

statements/methods. Toward that end, we order the columns 

(test cases) of the CC matrix so that the test cases with 

the non-zero values on nearby statements are close together. 

Specifically, the first test case covers the most statements. The 

next test case shares with the previous one as many executed 

statements as possible. We expect that the CNN model with its 
capability to learn the relationships among nearby cells via a 

small filter can recognize the visual characteristic features to 

discriminate faulty and non-faulty statements/methods.

Inspired by the method in crime scene investigation, we use 

three sources of information for FL: 1) code coverage matrix 

with failed test cases (the crime scene and victims), 2 ) similar 

buggy code in the history (usual suspects who have committed 

a similar crime in the past), and 3) the statements with data 

dependencies (related persons). First, the evidences at the 

crime scene are always examined. For an analogy, the CC 

matrix for the occurrence of the fault is analyzed. Second, an 

investigator also makes a connection from the crime scene to 

the usual suspects. This is analogous to the modeling of the 

code of the faults that have been encountered in the training 

dataset. The idea is that if the persons (analogous to the code) 

who have committed the crimes with similar modus operandi 

(M.O.) in the past are likely the suspects (code with high 

suspiciousness) in the current investigation.

Third, in addition to the crime scene, the investigator also 

looks at the relationships between the victim or the things hap-

pening at the scene and other related persons. Thus, in addition 

to the statement itself, its suspiciousness is viewed taking into 

account the data dependencies to other statements in execution 

flows and data flows. The idea is that some statements, even far 

away from the buggy line, could have impacts or exhibit the 

consequences of the buggy line when they are data-dependent. 

Thus, for a test, we first identify the error-exhibiting (EE) line 

(defined as the line where the program crashed or exhibited an 

incorrect value(s)/behavior(s)). That is, if the program crashes, 

the error-exhibiting line is listed. If there is no crash and an 

assertion fails, assertion statement is EE line. EE line is usually 

specified in a test execution. To identify the related statements, 

from the EE line, we consider the execution order. However, 

if the statements are in the same block of code (i.e., being 

executed sequentially), we also consider the data dependencies 

among them and with the EE line. Finally, all three sources 

of information are encoded into vector/matrix representations, 

which are used as input to the CNN model to act as a classifier 

to decide whether a statement/method as a faulty or not.

We conducted several experiments to evaluate DEEPRL4FL 

on Defects4J benchmark [1]. Our empirical results show that 

DEEPRL4FL locates 245 faults and 71 faults at the method 

level and the statement level, respectively, using only top- 

1 candidate (i.e., the first ranked element is faulty). It can 

improve the top- 1  results of the state-of-the-art statement- 
level FL baselines by 317.7%, 273.7%, 173.1%, 195.8%,

1 public static String join(Object[] array, char separator,
2 int startIndex, int endIndex) {
3 if (array == null) {
4
5
6

return null;

int noOfItems = (endIndex - startIndex);
7 if (noOfItems <= 0) {
8
9

10

return EMPTY;

-StringBuilder buf = new StringBuilder((array[ startIndex]
11 == null? 16 : array[startIndex].toString().length())+1);
12 + StringBuilder buf = new StringBuilder(noOfItems * 16);
13 for (int i = startIndex; i < endIndex; i++)
14 if (i > startIndex) {
15 buf.append(separator);
16 }
17 if (array[i] != null) {
18 buf.append(array[i]);
19 }
20 }
21 return buf.toString();
22 }

Fig. 1: An Example of a Buggy Statement

and 491.7% when comparing with Ochiai [6 ], Dstar [48], 

Muse [33], Metallaxis [38], and RBF-Neural-Network-based 

FL (RBF) [47], respectively. DEEPRL4FL also improves 

the top-1 results of the existing method-level FL baselines, 

MULTRIC [52], FLUCCS [43], TraPT [28], and DeepFL [27], 

by 206.3%, 53.1%, 57.1%, and 15.0%, respectively. Our 

results show that three sources of information in DEEPRL4FL 

positively contribute to its high accuracy.

We also evaluated DEEPRL4FL on ManyBugs [25], a ben-

chmark of C code with 9 projects. The results are consistent 

with the ones on Java code. DEEPRL4FL localizes 27 faulty 

statements and 98 faulty methods using only top-1 results.

The contributions of this paper are listed as follows:

1. Novel code coverage representation. Our representation 

enables fully exploiting test coverage matrix and taking advan-

tage of the CNN model in image recognition to localize faults.

2. DEEPRL4FL: Novel DL-based fault localization ap-
proach. Test case ordering and three sources of information al-

low treating FL as a pattern recognition. Without ordering and 

statement dependencies, the CNN model will not work well.

3. Extensive empirical evaluation. We evaluated our model 

against the most recent FL models at the statement and method 

levels, in both within-project and cross-project settings, and for 

both C and Java. Our replication package is available at [5].

II. M o t iv a t i n g  Ex a m p l e s

Fig. 1 shows a real-world example of a bug in Defects4J [1]. 

The bug occurs at line 10 in which the length of the string to 

be built via StringBuilder was not set correctly. A developer 

fixed the bug by modifying lines 1 0 - 1 1  into line 1 2 .

To localize the buggy line, there exist three categories of 

approaches. The first one is spectrum-based fault localization 

(SBFL). The key idea in SBFL is that in a test dataset, a line 

executed more in the failing test cases than in the passing ones 

is considered as more suspicious than a line executed more in 

the passing ones. A summary of the CC matrix for this bug is 

shown in Fig. 2a. The lines 3, 6-7, and 10-11 in Fig. 1 are
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1 ¿2 19 ¿33
line-3 o ... • ... • ... o ... • ... • line-3 • • • • o ... o
line-4 o ... o ... o ... o ... o ... o line-4 o o o o o ... o
line-6 o ... • ... • ... o ... • ... • line-6 • • • • o ... o
line-7 o ... • ... • ... o ... • ... • line-7 • • • • o ... o
line-8 o ... o ... • ... o ... o ... • line-8 o o • • o ... o

line-(10-11) o ... • ... • ... o ... • ... • line-(10-11) • �• • o ... o
line-13 o ... • ... • ... o ... o ... • line-13 �• • • o ... o
line-14 o ... • ... • ... o ... o ... • line-14 • o • • o ... o
line-15 o ... • ... • ... o ... o ... • line-15 • o • • o ... o
line-17 o ... • ... • ... o ... o ... • line-17 • o • • o ... o
line-18 o ... • ... • ... o ... o ... • line-18 • o • • o ... o
line-21 o ... • ... • ... o ... o ... • line-21 • o • • o ... o

(a) (b)
Fig. 2: Code Coverage for Fig. 1 (Note: o, •, * for 0,1,-1)

executed in both passing and failing test cases, and as a 

result, given the same suspiciousness scores. Thus, SBFL is 

ineffective to detect the buggy line 1 0  and this buggy method.

The second category is mutation-based fault localization 

(MBFL). A MBFL approach (e.g., Metallaxis [38]) modifies 

a statement using mutation operators. After collecting code 

coverage information for each statement regarding to multiple 

mutations, it computes the suspiciousness score for each state-

ment using a spectrum-based formula (e.g., Ochiai [6 ]) on the 

CC matrix for each original statement and for its mutated ones. 

However, the fix for the buggy line 10 requires more com-

plex code transformations than a mutation. Thus, an MBFL 

approach cannot detect this buggy line and buggy method.

The third category is deep learning and machine learning- 

based FL approaches [27], [47]. Specifically, Wong el al. [47] 

use a backpropagation neural network on code coverage for 

each statement. Since the lines 3, 6-7, and 10-11 are executed 

in both passing and failing test cases, the model cannot learn 

to distinguish them to detect the buggy line 10. DeepFL [27], 

uses multilayer perceptron (MLP) on a matrix in which each 

row corresponds to a statement, while each column is a sus-

piciousness score computed by a spectrum-based formula, or 

a code complexity metric. In our experiment (Section Ix-C1), 

DeepFL could not detect the buggy line 10. Despite combining 

several scores, the aforementioned lines are given the same 

suspiciousness scores by each spectrum-based formula. 

Observation 1. The state-of-the-art spectrum-based [22], [31], 

mutation-based [33], [37], [38], and deep learning-based FL 

approaches [27] do not consider the full details of the CC 

matrix. Instead, they summarize each statement/row with a 

suspiciousness score, thus limiting their capabilities.

To address that, we aim to exploit the full details of the CC 

matrix via the use of the CNN model [24], which has been 

shown to be effective in image pattern recognition. However, 

there is a challenge: if we do not enforce an order on the test 

cases (columns), we might end up with a CC matrix with the 

dark cells (the values of 1) that are far apart (Fig. 2a). Note that 

the CNN model is effective to learn the relationships among the 

nearby cells in a matrix with its small sliding window (called 

filter) [24]. Thus, we need to enforce an order on the test cases, 
i.e., the columns o f the CC matrix so that the values o f 1 on 

the same or nearby rows get to be close to one another. For 

example, if we enforce an order with the mentioned strategy 

(we will explain the detailed algorithm later) for the running 

example, we will have the matrix in Fig. 2b. That is, the results

1 public int Compute(int x, int y, int z){
2 int i = x + 1 ;
3 int j = x + y;
4 int m = 5;
5 - if  (i < y + 4)
6 + if  ( i <y +7 )
7 i f ( j > 5 &z > j ) {
8 m = m + z;
9 } else {

10 m = m + j;
11 }
12 } else {
13 m = m + i;
14 }
15 i = m + 1;
16 return m;
17 }

Fig. 3: A Buggy Statement and Interdependent Statements

for the test cases 9, 33, etc. in the test dataset of Defects4J for 

this example are shown in the leftmost columns. We expect 

that the CNN model with its sliding window is more effective 

in the resulting matrix after the ordering due to the nearby 

dark cells on the left side. The empirical study on the impact 

of such ordering will be explained in Section Ix.

Let us consider another example in Fig. 3. The bug occurs at 

line 5 and is fixed in line 6 . The program fails in two test cases:

1) x=5, y=0, z=1, and 2) x=7, y=1, z=9. In this example, the 

lines 2, 3, 4, 5, 15, and 16 are all executed in both passing and 

failing test cases. Thus, the spectrum-based, mutation-based 

approaches, and DeepFL give them the same suspiciousness 

scores, and do not detect the buggy line 5 and this buggy 

method. The line 16 returns the unexpected results for the two 

failing test cases. In fact, the spectrum-based and mutation- 

based approaches locate line 16 as the buggy line. However, 

the actual error occurs at line 5, steering the execution to the 

incorrect branch of the if statement. This implies that while 

the source o f the bug is at line 5, the error exhibits at line 

16, which is far apart from line 5, yet has a dependency with 

it. However, the line 15, immediate preceding of line 16, does 

not contribute to the incorrect result at line 16.

Observation 2. We observe that the line that exhibits erro-

neous behavior (e.g., line 16) might not be the buggy line 

(line 5). However, the buggy line 5 has a dependency with 

the line 16. Thus, identifying the key line exhibiting the 

erroneous behavior is crucial for FL. We also observe that 

the lines with program dependencies with one another are in 

fact more valuable in helping localize the buggy line than the 

lines without such dependencies. Thus, while considering the 

execution order ofstatements, an FL approach should consider 

the statements with program dependencies as well.

III. Ex p l o r a t o r y  St u d y

Inspiring by the above observations, to further study the im-

pact of ordering of the columns (i.e, the test cases) of the code 

coverage matrix, we conduct an exploratory experiment with 

the Convolution Neural Network (CNN) model. Specifically, 

we choose a simple CNN model having 2D convolutional 

layer and 15 convolutional cores with the size of 3 * 3. In
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Fig. 4: A Feature Map after Ordering of Test Cases

this experiment, we use all the bugs in the Defects4J dataset 

(will be explained in Table I). As for training and testing, we 

use the leave-one-out strategy on the entire Defects4J dataset. 

That is, when we perform testing on a fault, we use all other 

faults in the dataset as the training data to train the model. 

As for the ordering in the code coverage matrix, the first test 

case is the one covering as many statements as possible, and 

the subsequent test case is the one that runs through as many 

same statements as the previously selected test cases (will be 

detailed in Section V-C). To encode the pass/fail information, 

we detected the error-exhibiting lines (EE) (see Section v-B) 

and marked them with -1  values.

We conduct two executions with two different inputs for the 

CNN model. In the first one, for training, we use the original 

spectrum-based CC matrix as the input. The output is a matrix 

with the same size as the input CC matrix, however, the row 

corresponding to the buggy statements/lines are marked with 

all the 1 values and all other rows are marked with the zeros. 

For the second execution, we use the CC matrix after ordering. 

The output is the same as in the first execution. For testing, we 

use the trained CNN model to run on the buggy methods under 

test. We examine the output of that execution. The CNN model 

generates 1 5  feature maps as the output from the 1 5  different 

convolutional cores. The feature maps of a CNN capture the 

result of applying the CNN filters to an input matrix. That 

is, at each layer, the feature map is the output of that layer. 

By visualizing a feature map for a specific input image, i.e., 

an CC matrix, we aim to gain some understanding of what 

features the CNN model can detect.

We randomly select 10 faults as the testing data. In two of 

them, the result of the CNN model indicates the correct buggy 

statement for the fault. Fig. 4 shows the result for one of the 

faults. We visualized the code coverage matrices and feature 

maps as gray-scale images. In the code coverage matrices on 

the left, rows represent statements from the top to the bottom, 

and columns represent test cases. The buggy statement/line is 

marked with a red rectangle. As seen, after ordering, the left 

side of the CC matrix becomes darker. The white part, which 

represents the zero values, corresponds to the test cases that 

do not go through the statements in this buggy method.

Fig. 5: De e p RL4FL’s Architecture

For the feature maps corresponding to before and after 

ordering, the rows also correspond to the statements and the 

columns represent the test cases. We examine all 15 feature 

maps when running the CNN model on an input. Among 

the 15 feature maps for the case of ordering, we found one 

feature map (feature map 2 : the bottom right image) contains 

the darker spot at the buggy statement/line compared to the 

lighter spots for the non-buggy statements/lines. We examine 

all 15 feature maps for the case of the original CC matrix and 

visualize the corresponding feature map (feature map 1: the 

upper right image). As seen in the red rectangle, there is no 

dark line/spot around the buggy statement. In brief, with the 

ordering of the columns in the CC matrix, we make the CNN 

model recognize visual characteristics corresponding to the 

buggy statement and distinguish it from the non-buggy ones. 

This motivates us to integrate the ordering of the columns in 

the CC matrix for code coverage representation learning.

IV. Ap p r o a c h  Ov e r v i e w

Inspired by the crime scene investigation method, we ex-

plore three aforementioned sources of information. Correspon-

dingly, DEEPRL4FL has three representation learning pro-

cesses: code coverage representation learning (crime scene), 

statements dependency representation learning (relations), and 

source code representation learning (usual suspects) (Fig. 5).

1) Code Coverage Representation Learning: This learn-

ing is dedicated to the “crime scene” analysis of the bug. This 

process has two parts. First, to help the CNN model recognize 

the patterns, we take the given (un-ordered) set o f  test cases 

and perform  an ordering algorithm  to arrange the columns of 

the CC matrix. The strategy of ordering is to enable the values 

of 1 to be closer to form darker spots in the left side of the 

matrix, expecting that the CNN model can work effectively to 

recognize nearby cells to distinguish the buggy and non-buggy 

statements (see exploratory study and empirical evaluation).

Second, we also perform the analysis on the output of test 

cases to locate the error-exhibiting (EE) lines (Observation

2). If the execution of a test crashes, the line information is 

always available. Even if there is no crash, the test fails, the 

program often explicitly lists the lines of code that exhibit the 

incorrect results/behaviors. We use such information to locate 

the EE line in the buggy source code corresponding to each test
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case. Finally, the results of individual test cases are encoded as 

follows. The cells in the matrix corresponding to the EE lines 

of test cases will be marked with - 1  values (see the stars in 

Fig. 2b). Thus, if a column has a value of -1 at a row, the 

corresponding test case is a failing one. The values of 1 and 

0  represent the coverage or non-coverage of the test case to a 

statement. Thus, a column has no value of -1 (all the values are 

0 or 1), the corresponding test case is passing. The resulting 

matrix is called the enhanced CC matrix (ECC).

2) Dependency Representation Learning: The suspi-

ciousness of a statement is seen taking into account the data 

dependencies to other statements in the execution flows and 

data flows, in addition to the statement itself (Observation 2). 

Specifically, we consider both the execution orders and data 

dependencies among the statements. For example, if the state-

ments are executed sequentially in the same nested level as 

part of a block statement, data dependencies will help the 

model in FL as shown in Section II. Additionally encoding 

the statements with such dependencies has the same effect 

as putting together the rows corresponding to the dependent 

statements in the CC matrix. In our example, in addition to the 

entire matrix in Fig. 3, we also encode the data dependencies 

among statements (i.e., in the same spirit with the case of 

putting closer the rows 2 , 3 , 4 , 5 , 1 3 , 1 5 , and 1 6 ), and feed 

them into the CNN model. In our tool, we collect execution 

paths and data flow graph for each test case.

3) Source Code Representation Learning: For each 

buggy code in the training data, we choose to represent the 

code structure by the long paths that are adapted from a prior 

work [10], [29]. A long path is a path that starts from a leaf 

node, ends at another leaf node, and passes through the root 

node of the AST. The AST structure can be captured and 

represented via the paths with certain lengths across the AST 

nodes [10]. After this, we have the vectors for the buggy code. 

Finally, all the representation vectors are used as the inputs of 

the CNN model, which is part of the FL module in Fig. 5.

V. CODE COVERAGE REPRESENTATION LEARNING

A. Generating Code Coverage Matrices
As in prior FL studies [6 ], [7], [30], we obtain a code 

coverage matrix for each method of a given project and error 

messages of the failing test cases using GZoltar [2], a tool for 

code coverage analysis. We further modify GZoltar to record 

the actual execution path of statements within a method during 

the execution of a test case. For example, for the method in 

Fig. 1, the execution path of running the first selected test 

case is line_3 ^  line_6 ^  line_7 ^  line_(10 — 11) ^  line_  13 ^  

line_  14 ^  line_  15 ^  line_ 17 ^  line_18 ^  .... ^  line_21.

Statem en ts repeated in the fo r  loop
We also use mutation to generate more coverage informa-

tion. First, we apply the same mutators as in DeepFL [27] to 

mutate each statement within a method using the mutation tool 

PIT-1.1.5 [4]. To generate a mutation-based matrix, we apply 

one mutator to mutate a statement and use GZoltar to record 

the execution. Thus, given n  mutators that can be applicable to 

a statement, we generate n new versions of the given method.

java.lang.IllegalArgumentException: Colon parameter outside of expected range: Red Green Blue 
at java.awt.Color.testColorValueRange(Color.java:310) 
at j ava.awt.Color.<init>(Color.j ava:395)
at java.awt.Color.<init>(Color.java:369)_________________________________
|at org.jfree.chart.renderer.GrayPaintScale.getPaint(GrayPaintScale.java:128)| 
at org.jfree.chart.renderer.j unit.GrayPaintScaleTests.testGetPaint(GrayPaintScaleTests.j ava:107) 
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) 
at sun.reflect.NativeMethodAccessorlmpl.invoke(NativeMethodAccessorImpl.java:57) 
at sun.reflect.DelegatingMethodAccessorlmpl.invoke(DelegatingMethodAccessorlmpl.java:43) 
at j ava.lang.reflect.Method.invoke(Method.j ava:606) 
at junit.framework.TestCase.runTest(TestCase.java:176) 
at junit.framework.TestCase.runBare(TestCase.java:141) 
at junit.framework.TestResult$l.protect(TestResult.java:122)

Fig. 6 : Error Message Example

If it has m statements, we generate n * m matrices for the 

method. We refer the mutation-generated n * m matrices as 

mutation-based matrices and for clarification, we refer the 

non-mutator-generated matrix as the spectrum-based matrix.

B. Identifying Error-Exhibiting Lines

A cell in the CC matrix can have three values: {1,0,-1}. 

While the values of 1 and 0 indicate passing, the values of (-1) 

indicate failing. We obtain -1 for an error-exhibiting statement 

or crashed statement from the error messages of failing test 

cases. An error message shows the names of classes, methods, 

and line numbers exhibiting an error. We directly use the 

line numbers, method and class names to assign -1 s to the 

statements in the matrix. Fig. 6  shows an example of the error 

message containing a stack trace produced by running a test 

case on the project Chart with the bug Chart-24. Because the 

current method under investigation is getPaint, our algorithm 

searches for that method in the stack trace to derive the EE 

statement at the line 128 of the file GrayPaintScale.java (which 

contains the method getPaint). Each failing test case has only 

one EE statement for the current method under study.

C. Test Case Ordering Algorithm

Algorithm 1 takes the set of test cases S and enforces an 

order on S . The strategy is to move the values of 1 and -1 

closer to one another in the left side. First, if there exist failing 

test cases, i.e., test cases with -1 s, we select the test case with 

the value of -1 at the statement appearing latest in the code. We 

then find the test case that shares the same statement having 

-1 with the last selected test case (line 9). That is, we group 

together the test cases that go through the same statement and 

also fail. If we do not have such test case, then we repeat the 

process of looking for another failing test case (i.e., with -1 ). 

In Fig. 2b, the test case 9 is selected as the first one with only 

one -1 (marked with a star) at the line 13 (latest statement). 

We search for the next test case that has a -1 at the latest. The 

test case 33 is chosen at the second column.

If we do not have any failing test case left, we select the test 

case that has the most 1s (line 13). Next, we select the next 

test case that shares the most number of the same statements 

having the values of 1s with the last selected test case. This 

helps move the values of 1 closer. We repeat this step to select 

a new test case compared with the previously selected one until 

all the test cases were ordered. We stop this step if no test case 

has the same statements with 1 s as the last selected test case 

(column). If two test cases are tie, we select the one with the

665

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 09,2022 at 01:05:57 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Test Case Ordering Algorithm

1: function O r der ingT est C a ses(S  : testSet)
2 : List = []
3: while (S  < >  0 ) do
4 : if H aveT est Ca sesW it hM inusO n e(S ) then
5: selT = F indT est C a seW it hM inusO neW it hH ighest Index(S )
6: S.remove(selT)
7 : List.append(selT)
8: while HAVET ESTCASESAMESTMTW lTHM lNUSO NE(s e l T ,  S ) do
9: selT = F indT est C a seSa meSt mt W it hM inusO ne(s e l T ,  S)

10: S.remove(selT)
11: List.append(selT)
12: else
13: selT = F indT est C a seW it hM ost O ne(S )
14: S.remove(selT)
15: List.append(selT)
16: while H aveT est C a seW it hSa meS t mt sW it hO ne(s e l T ,  S) do
17: selT = F indT est W it hM ost Sa meS t mt sW it hO n e(s e l T ,  S)
18: S.remove(selT)
19: List.append(selT)
2 0 : return List

last value of 1 at a statement appearing latter. The rationale is 

that such a test case covers more statements than the other. If 

they are still tie, the selection of either of them will result in 

similar visual effects locally at that row. In brief, in any cases 

of ties, the visual effects around the statements are similar.

In addition to the spectrum-based matrices, we also apply 

the same enhancements, identifying error-exhibiting lines and 

ordering text cases to mutation-based code coverage matrices.

VI. St a t e m e n t -De p e n d e n c y  Re p r e s e n t a t i o n

We aim to model the execution orders and data dependen-
cies among the statements of the method under study.

1) Execution Order Representation: We obtain the ex-

ecution path (e-path) as each test case was executed. We 

only consider the relations among statements within a method. 

Since an e-path is a sequence of statements, we apply 

word2vec [32] on all execution paths of test cases to learn 

the vectors that encode the relations among statements. Thus, 

each statement has a word2vec-generated vector.

2) Data Dependency Representation: using execution 

paths is not sufficient due to the following. First, the statements 

in a loop may repeat multiple times in an e-path, thus, they 

may dominate vector learning using word2vec and weaken the 

relations between the statements inside and outside of a loop, 

which is also crucial in FL. Second, interdependent statements 

might not be nearby in an e-path, yet are useful in detecting 

the buggy line (Observation 2). To address those, we also use 

the data-flow graph (DFG) for the statements in a method.

We use WALA [45] to generate DFGs in which a node rep-

resents a statement and an edge represents a data flow between 

two nodes. If A connects to B, we assign the weight of 1. 

If there is no edge from B to A, we create that edge but 

assign the weight of -1. This makes node2vec [18], a network 

embedding technique, applicable to our graph. The value 

of - 1  helps distinguish between the artificial edges and the 

real ones. After this step, some statements (nodes) with data 

dependencies have node2vec-generated vectors.

3) Vectors for Statements with Dependencies: The 

word2vec vector for a statement s in the execution order and

the node2vec vector for s in program dependencies among the 

statements are combined via Hadamard product to represent s. 

Finally, the output vector is a statement-dependency vector 

for a statement, modeling the statement with the dependen-

cies and/or execution orders among statements.

4) Combining Statement Dependencies and ECC Matri-
ces: To further enrich the ECC matrix (a spectrum-/mutation- 

based matrix), we incorporate the dependencies among the 

statements in a method under study into that matrix. In the en-

hanced matrix, we have the i-th statement (Si) of a method un-

der test with the test cases, T  =  {Ti, . . . ,  Tj . . . ,  Tn}, where 

j  indicates the j-th  test case, 1 <  j  < n, and n  is the number 

of test cases. The statement Si under a test case Tj has a cell 

value vij that can be either {1, 0, or -1}. Thus, the statement 

Si can be represented as a vector S i = {vi1, . . .  ,v ij , . . . ,  vin}. 

Each statement (Si) has a statement-dependency vector (Sfd). 

We multiply each vij with S fd, to obtain vij * S fd, for each 

cell of Si and Tj in the enhanced matrix. Thus, the statement 

Si can be represented as a new 2-dimensional vector S |d = 

< vii * S?d, . . .  ,v ij * S f d, . . .  ,vin  * S fd >

multiplied by a vij = 0  results in a vector with all 0 s.

A method often has multiple statements {S1 , . . . ,  Si , . . .  

Sm}, where i indicates the i-th statement, 1 < i < m , and m 

is the number of statements. Thus, a method is presented as 
a 3-D matrix, i.e., a list o f 2-D statement vectors.

The same steps are used to enhance and combine statement 

dependencies into a mutation-based matrix. A statement Si 
in a mutation-based matrix is represented as a set of mutated 

statements and each mutated statement is represented as a 2-D 

vector. Thus, in this case, the statement S i is represented as a 

3-D matrix. After enhancing the ECC matrix and combining 

statement-dependencies as explained, we obtain the following:

• In a spectrum-based matrix (SBM), a statement is repre-

sented as a 2-D vector and a method as a 3-D matrix;

• In mutation-based matrices (MBM), a statement is repre-

sented as a 3-D matrix and a method as a 4-D matrix.

5) Encoding Code Coverage Matrices with a CNN 

Model: After obtaining those representations for statements 

and methods, we apply the Convolution Neural Network 

(CNN) [23] to learn features. We use a typical CNN with the 

following layers: a convolutional layer, a pooling layer and a 

fully connected layer. We feed the followings into the CNN 

model separately to detect a buggy statement/method:

i) For spectrum-based matrices (SBM), we fed a 2-D vector 

representing for a statement and a 3-D matrix for a method,

ii) For mutation-based matrices (MBM), we fed a 3-D matrix 

representing for a statement and a 4-D matrix for a method.

We apply a fully connected layer before CNN on the method 

in a mutation-based matrix (i.e., represented as a 4-D matrix) 

to reduce an 4-D matrix into an 3-D matrix.

The outputs of the CNN include the vectors for a statement 

or a method in spectrum-based or mutation-based matrices:

i) Vss, 1-D vector for a statement in SBM,

ii) Vsm, 1-D vector for a method in SBM,

iii) Vms, 1-D vector for a statement in MBM, and

iv) Vmm, 1-D vector for a method in MBM.
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VII. So u r c e  Co d e  Re p r e s e n t a t i o n  Le a r n i n g

Let us explain how we capture the usual suspicious source 

code via code representation learning.

For a statement, we tokenize it and treat each token in the 

statement as a word and the entire statement as a sentence. We 

use word2vec [32] on all the statements of a project to compute 

a token vector for each token. After having the vectors for 

all the tokens, for a statement, we have a matrix [Token- 

Vector1, Token-Vector2, . . . ,  Token-Vectorm]. To obtain a 

unified vector to represent a statement instead of a matrix, 

we apply a fully connected layer to reduce the matrix into 

1-D vector. Thus, we have one vector for each statement.

At the method level, we used two existing code representa-

tion learning techniques code2vec [29] and ASTNN [53] for 

a method. In code2vec, we use long paths over the AST. A 

long path is a path that starts from a leaf node, ends at another 

leaf node, and passes through the root node of the AST. The 

AST structure can be represented via the paths with certain 

lengths across the AST nodes. Specifically, we regard a long 

path as a sequence and apply word2vec on all the long paths 

of a method to generate a vector representation for each AST 

node. Now, each path is represented as an ordered list of node 

vectors (the order is based on the appearance order of the 

nodes in a path), and each method is represented as a bag of 

paths, i.e., ordered lists of node vectors. Essentially, a method 

is represented by a matrix. We use a fully connected layer to 

transform the matrix into 1-D vector for a method.

At the method level, we also used tree-based representation 

ASTNN [53]. ASTNN splits the AST of a method into 

small subtrees at the statement level and applies a Recursive 

Neural Network (RNN) [42] to learn vector representations 

for statements. The ASTNN exploits the bidirectional Gated 

Recurrent Unit (GRU) [44] to model the statements using the 

sequences of sub-tree vectors. After obtaining the long-path- 

based vector and the tree-based vector for a method, we apply 

a fully connected layer as the one in CNN [23] to combine 

these two vectors into one unified vector for a method.

VIII. Fa u l t  Lo c a l i z a t i o n  w i t h  CNN M o d e l

A. Statement-level Fault Localization
After all the previous steps, each statement has 3 vectors:

1) Vss, a SBM-based statement vector (Section VI-5);

2) Vms, a MBM-based statement vector (Section VI-5); and

3) Vcs, a source code-based statement vector (Section VII). 
The vectors are combined via Hadamard Product [19]:

M s  = [len(Vs s ), 1, 1], M m  = [1, len(Vm s ), 1],Mc  = [1, 1, len(V c s )]

M combined =  b r o a d c a s t ( M s ) o b r o a d c a s t ( M m ) o b r o a d c a s t ( M c)

M  is the matrix which is expanded from v by keeping one 

dimension as v and adding two more dimensions with the size 

of 1 . broadcast() is the operation to copy a dimension into 

multiple times to expand the matrix to the suitable size for 

Hadamard product. The rationale is that all three vectors from 

three different aspects should be fully integrated. The resulting 

matrix is of the size [len(Vss), len(Vms), len(Vcs)]. Next, we

use the trained CNN model with a softmax on the matrix to 

classify a statement into faulty or non-faulty. The output of 

the softmax is standardized to be between 0 to 1. To train the 

model, the same combined matrix for a statement is used at 

the input layer and the corresponding classification (faulty or 

not) is used at the output layer of the CNN model.

B. Method-level Fault Localization
Similar to statement-level FL, each method has 3 vectors:

1) Vsm, a SBM-based method vector (Section VI-5);

2) Vmm, a MBM-based method vector (Section VI-5); and

3) Vcm, a source code-based method vector (Section VII). 

Moreover, we also consider the similarity between the

source code and the error messages of the failing test cases as 

in DeepFL [27]. We first collect 3 types of information from 

failed tests, including the name of the failed tests, the source 

code of the failed tests and the complete failure messages 

(including exception type, message, and stacktrace). Second, 

we collect 5 types of information from source code, including 

the full qualified name of the method, accessed classes, 

method invocations, used variables, and comments. For each 

combination, we calculate the similarity score between each 

information from the failed tests and each from the source 

code using the popular TF-IDF method [27]. We generate 15 

similarity scores as 15 features for a method. Thus, a method 

also has the fourth vector, V^l™ with 15 features.

For fault localization, we combine the above method vectors 

into a matrix by using the Hadamard product as in Sec-

tion VIII-A, then use the trained CNN model with a softmax 

to classify a method into faulty or non-faulty. We train the 

model in the same manner as FL at the statement level.

IX. Em p i r i c a l  Ev a l u a t i o n

A. Research Questions
We seek to answer the following research questions:

RQ1. Statement-level FL Comparison. How well does our 

tool perform compared with the state-of-the-art statement-level 
FL models?

RQ2. Method-level FL Comparison. How well does our tool 

perform compared with the existing method-level FL models? 

RQ3. Impact Analysis of Different Matrix Enhancing
Techniques. How do those techniques including test case 

ordering, and statements dependency affect the accuracy? 

RQ4. Impact Analysis of Different Representations Learn-
ing. How do different types of information affect the accuracy? 

RQ5. Cross-project Analysis. How does DEEPRL4FL per-

form in the cross-project setting?

RQ6. Performance on C Code. How does DEEPRL4FL 

perform in C projects for FL?

B. Experimental Methodology
1) Data Set: We use the benchmark, Defects4J V1.2.0 [1] 

with ground truth (Table I). For a bug in project P , Defects4J 

has a separate copy of P  but with only the corresponding 

test suite revealing the bug. For example, P 1 , a version of P , 

passes a test suite Ti . Later, a bug B i in Pi is identified. After
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TABLE I: Defects4J Dataset

Identifier Project name # of bugs
Chart JFreeChart 26
Closure Closure compiler 133
Lang Apache commons-lang 65
Math Apache commons-math 106
Mockito Mockito 38
Time Joda-Time 27

debugging, Pi has an evolved test suite T2 detecting the bug. 

In this case, Defects4J has a separate copy of the buggy P 1 

with a single bug, together with the test suite T2. Similarly, for 

bug B 2, Defects4J has a copy of P2 together with T3 (evolving 

from T2), and so on. For within-project setting, we test one 

bug Bi with test suite T(i+1) by training on all other bugs 

in P . To reduce the influence of the overfitting problem, we 

applied L2 regularization and added dropout layers.

2) Experiment Metrics: Following prior studies [27], [28], 

we use the following metrics to evaluate an FL model:

Recall at Top-K: is the number of faults with at least one 

faulty statement that is correctly predicted in the ranked list 

of K  statements. We report Top-1, Top-3, and Top-5.

Mean Average Rank (MAR): We compute the average 

rank of all faulty elements for each fault. MAR of each project 

is the mean of the average rank of all of its faults.

Mean First Rank (MFR): For a fault with multiple faulty 

elements (methods/statements), locating the first one is critical 

since the others may be located after that. MFR of each project 

is the mean of the first faulty element’s rank for each fault.

3) Experiment Setup and Procedure:
RQ1: Statement-level Fault Localization Comparison.

Baselines. We compare DEEPRL4FL with the following 

statement-level FL approaches:

• Two spectrum-based fault localization (SBFL) tech-

niques: Ochiai [6 ] and Dstar [48];

• Two recent mutation-based fault localization (MBFL) 

techniques: MUSE [33] and Metallaxis [38];

• Two deep-learning based FL approaches: RBF Neural 
Network (RBF) [47] and DeepFL [27]. DeepFL [27] 

works at the method level with several features. For 

comparison, in this RQ1 for the statement level, we can 

only use DeepFL’s spectrum- and mutation-based features 

applicable to detect faulty statements.

As in FL work [12], [27], [28] using Defects4J, we used the 

setting of leave-one-out cross validation on the faults for each 

individual project (i.e., within-project setting). Specifically, we 

use one bug (i.e., with one buggy statement or method) as 

testing, and the remaining bugs in a project for training.

Tuning DEEPRL4FL and the baselines. We tuned our 

model with the following key hyper-parameters to obtain the 

best performance: (1) Epoch size (i.e., 100, 200, 300); (2) 

Batch size (i.e., 64, 128, 256); (3) Learning rate (i.e., 0.001, 

0.003, 0.005, 0.010); (4) Vector length of word representation 

and its output (i.e., 150, 200, 250, 300); (5) Convolutional core 

size (i.e., 3 x 3, 5 x 5, 7 x 7, 9 x 9, and 11 x 11); (6 ) The 

number of convolutional core (3, 5, 7, 9, and 11).

As for word2vec, for a method, we consider all tokens in the 

source code order as a sentence. We tune the following hyper-

parameters for DeepFL (using only the features relevant to 

statements): Epoch number (5, 10, 15, ..., 60), Loss Functions 

(softmax, pairwise), and learning rate (0.001, 0.005, 0.010).

RQ2: Method-level Fault Localization Comparison.
Baselines: We also compare our approach with the follow-

ing state-of-the-art approaches that localize faulty methods.

MULTRIC [52] is a learning-based approach to combine 

different spectrum-based ranking techniques using learning-to- 

rank for effective fault localization.

FLUCCS [43] is a learn-to-rank based technique using 

spectrum-based scores and change metrics (e.g., code churn 

and complexity metrics) to rank program elements.

TraPT [28] is a learn-to-rank technique to combine 

spectrum-based and mutation-based fault localization.

DeepFL [27] is a DL-based model to learn the existing/la- 

tent features from multiple aspects of test cases and a program. 

We used all the features of DeepFL in this method-level study.

Tuning DEEPRL4FL and the baselines. Similar to RQ1, we 

perform our experiments using leave-one-out cross validation 

on the faults for each project. We use the same settings in RQ1 

to train our model. Note that in DeepFL paper [27], DeepFL, 

MULTRIC, FLUCCS, and TraPT have been evaluated using 

leave-one-out cross validation and other settings on the same 

data set of Defects4J V1.2.0. DEEPRL4FL is also evaluated 

on Defects4J V1.2.0 using the same settings and procedure as 

DeepFL. Thus, we used the result on the numbers of detected 

bugs reported in DeepFL [27] for those models.

RQ3: Impact Analysis of Different Matrix Enhancing
Techniques. We evaluate the impact of the following tech-

niques on accuracy: (1) test case ordering algorithm utilizing 

the EE lines (Order); (2) statements’ dependencies (StatDep). 

We first build a base model by using only the spectrum- and 

mutation- based matrices in DEEPRL4FL (without using the 

above techniques), then apply the above techniques on the ma-

trices to build two variants of DEEPRL4FL: {Base+Order}, 
and {Base+Order+StateDep (DEEPRL4FL)}. We train each 

variant using the same settings as in RQ1. Due to space limit, 

we show only the analysis results obtained in the within- 

project setting for method-level FL.

RQ4: Impact Analysis of Learning Representations. We

have the following representation learning schemes: the en-

hanced spectrum-based CC matrix (NewSpecMatrix) and 

the enhanced mutation-based CC matrix (NewMutMatrix). 

We also have source code representation (CodeRep) and 

textual similarity between source code and error messages 

in failing tests (TextSim). To test the impact of those rep-

resentation learning schemes on accuracy, we built a base 

model using only NewSpecMatrix, and three other variants: 

{NewSpecMatrix+NewMutMatrix}, {NewSpecMatrix+ New- 
MutMatrix+CodeRep}, and {NewSpecMatrix+ NewMutMa- 
trix+CodeRep+TextSim}. We trained each variant using the 

same settings as in RQ1. Due to space limit, we show only 

the results for the within-project setting for method-level FL.
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TABLE II: RQ1. Results of comparative study for statement-

level fault localization. P% = |Top-1|/{395 Bugs}

Approach Top-1 Top-3 Top-5 P% MFR MAR

Ochiai 17 88 115 4.3% 54.29 71.32
Dstar 19 92 115 4.8% 48.67 69.51
MUSE 26 47 63 6.6% 36.34 48.73
Metallaxis 24 81 108 6.1% 34.59 49.21
RBF 12 37 52 3.0% 22.54 57.47
DeepFL 39 114 129 9.9% 24.09 31.28
De e p RL4FL 71 128 142 18.0% 20.32 28.63

RQ5: Cross-project Analysis. We also setup the cross-project 

scenario: testing one bug in a project, but training a model on 

all of the bugs of other projects. For a project, we test every 

bug and sum up the total number of bugs in the project that 

can be localized in the cross-project scenario.

RQ6: DEEPRL4FL’s Fault Localization Performance on C 

Code. We also evaluated DEEPRL4FL on C projects from the 

benchmark dataset, ManyBugs [3], [25], with 185 bugs from 9 

projects. We used the same model in RQ1 for statement-level 

FL and the model in RQ2 for method-level FL.

C. Experimental Results

1) RQl-Results (Statement-level Fault Localization Com-
parison): As seen in Table II, DEEPRL4FL improves over 

the state-of-the-art statement-level FL baselines. Specifically, 

DEEPRL4FL improves Recall at Top-1 by 317.6%, 273.7%, 

173.1%, 195.8%, 491.7%, and 82.1% in comparison with 

Ochiai, Dstar, Muse, Metallaxis, RBF, and DeepFL.

We examined the results and report the following. The key 

reason for the spectrum-based FL approaches fail to localize 

the buggy statements is that they give the same suspiciousness 

score to the statements at the same nested level. For the 

mutation-based FL approaches, the key reason for not being 

able to localize the buggy statements/methods is that the fix 

requires a more sophisticated change than a mutation. Let us 

take an example. In Fig. 7, the fault is caused by an incorrect 

variable. To fix it, the variable was changed from pos to pt 
at line 14. The state-of-art spectrum-based approaches cannot 

localize this fault because lines 6 , 7, 13, and 14 have the 

same score (They were executed in both passing and failing 

test cases). For the mutation-based FL approaches, there is 

none of mutation operators that changes the variable pos into 

pt in a method call at the buggy line 14. Thus, they cannot 

observe the impact of mutations on the code coverage. As a 

consequence, they cannot locate the buggy line 14.

To gain insights, we performed a visualization of a feature 

map for this case. During training, CNN learns the values 

for small windows, called filters. The feature maps of a CNN 

capture the result of applying the filters to an input matrix. 

That is, at each layer, the feature map is the output of that 

layer. In image processing, visualizing a feature map for an 

input helps gain understanding on whether the model detects 

some part of our desired object and what features the CNN 

observes. Fig. 8  shows a feature map for the example in Fig. 7. 

We can see that around the lines 6 - 8  and 13-14, the feature

1 public void translate(CharSequence input, Writer out)...{
2 ...
3 int pos = 0;
4 int len = input.length();
5 while (pos < len) {
6 int consumed = translate(input, pos, out);
7 if (consumed == 0) {
8 char[] c=Character.toChars(Char...codePointAt(...));
9 out.write(c);

10 pos+= c.length;
11 continue;
12 }
13 for (int pt = 0; pt < consumed; pt++) {
14 - pos += Char.charCount(Char.codePointAt(input,pos));
15 + pos += Char.charCount(Char.codePointAt(input, pt));
16 }
17 }
18 }

Fig. 7: An Example from Defects4J

Hr— l | i

Fig. 8 : A Feature Map Produced by CNN for Fig. 7

map is visually dark. Without ordering (i.e., a random order of 

test cases), the feature map does not exhibit such visualization.

To further study the impacts of the ordering and data 

dependencies, we modified DEEPRL4FL in the following 

settings: 1) No ordering + No dependencies: the buggy line 14 

is ranked at 43th; 2) No ordering + dependencies: it is ranked 

at 29th; 3) Ordering + No dependencies: it is ranked at 7th; 

and 4) Ordering + dependencies: it is ranked at the top.

2) RQ2-Results (Method-level Fault Localization Com-
parison): As seen in Table III, DEEPRL4FL improves Re-

call at Top-1 by 206.3%, 53.1%, 57.1%, and 15.0% over 

MULTRIC, FLUCCS, TraPT, and DeepFL, respectively. 

DEEPRL4FL’s MAR is slightly higher than DeepFL’s (3.6% 

higher). On average, DEEPRL4FL ranks the correct elements 

higher than DeepFL, as its MFR is lower (10.4% lower).

The spectrum-based and mutation-based FL approaches fall 

short of DeepFL and DEEPRL4FL. A key reason is that they 

consider only dynamic information in test cases, while DeepFL 

and our model use both static and dynamic information. In 

comparison with DeepFL, we further analyzed the bugs that 

our tool can locate, but DeepFL missed. We found that the 

mean first rank of a buggy method in the ranking lists of 

potential buggy methods returned by DeepFL is 7.08. Without 

the ordering and statement dependency in our model, the mean 

first rank is 6.84. With only ordering in our model, the mean 

first rank is 2.82. With only dependency in our model, the 

mean first rank is 4.45. With both ordering and dependency, 

our model can locate the bugs that DeepFL missed.

Let us use an example in Defects4J (Fig. 9) that our 

model detected but DeepFL missed. The (buggy) method
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TABLE III: RQ2. Results of Comparative Study for Method-

level Fault Localization. P% = |Top-1|/{395 Bugs}

Approach Top-1 Top-3 Top-5 P% MFR MAR
MULTRIC 80 163 195 20.3% 37.71 43.68
FLUCCS 160 249 275 40.5% 16.53 21.53
TraPT 156 249 281 39.5% 9.94 12.70
DeepFL 213 282 305 53.9% 6.63 8.27
DE E P RL4FL 245 294 311 62.0% 5.94 8.57

O
Methods in 
the project

(B) W ith  O n ly O rdering

(A) DeepRL4FLw/o Ordering 
and Statement Dependency

1. getSubMatrix
2. flipIfWarranted
3. preMultip ly
4. computeShiftlncrement
5. mapSinh

(D) DeepRL4FL
1. getSubMatrix
2. mapSinh
3. createNoSuchElementException
4. scalarMultiply
5. flipIfWarranted

1. flipIfWarranted
2. computeShiftlncrement
3. preMultiply
4. getSubMatrix
5. mapSinh

(C) W ith O nly 
S ta te m e n t D ependencies

1. mapSinh
2. getSubMatrix
3. flipIfWarranted
4. createNoSuchElementException
5. preMultip ly

Ranked list fo r all methods

TABLE IV: RQ3. Ordering (Order) and Adding Dependencies 

(StateDep) in Method-level FL. P% = |Top-1|/{395 Bugs}

Variants Top1 P% M FR M A R

B ase (D EEPR L 4 F L  w / o  O rder,S tateDep) 173 43.8% 8.23 10.27

B ase + O rder 226 57.2% 6.57 8.97

B ase + O rder + StateD ep (D EEPR L 4 F L ) 245 62.0% 5.94 8.57

Fig. 10: Visually Darker Lines around Buggy Statement

Fig. 9: Ordering and Statement Dependencies Affect Ranking

flipIfWarranted together with the other methods in the project 

were fed into four variants of our model. As seen, with the 

setting in which both ordering and statement dependencies are 

removed, flipIfWarranted is ranked 5th in the list of all methods. 

For the setting with only ordering, it is ranked at 2nd place. For 

the setting with only statement dependencies, it is ranked 3rd. 

With both, our model ranks the buggy method flipIfWarranted 

at the 1st position. This analysis shows that ordering test cases 

and statement dependencies are the key drivers that help our 

model locate more bugs than DeepFL.

3) RQ3-Results (Impact Analysis of Different Matrix 

Enhancing Techniques): Table IV shows that our matrix 

enhancing techniques positively contribute to DEEPRL4FL. 

Specifically, comparing {Base} with {Base+Order}, ordering 

the test cases can improve every metric. Order helps localize 

53 more bugs (13.4%) using Top-1. It helps improve MFR 

and MAR by 20.1% and 12.7%, respectively, showing that 

ordering can help DEEPRL4FL push the faulty methods 

higher in the ranked list.

Comparing {Base+Order} with {Base+Order+StateDep}, 

we see that modeling dependencies into matrices is useful to 

improve the performance of DEEPRL4FL. StateDep can im-

prove 8.4%, 9.6%, and 4.5% in Top-1, MFR, and MAR.

To further study the impact o f the ordering, we visualize the 

feature maps for the 53 bugs that Order can detect and Base 

did not. Those are the cases where ordering helps. Visualizing 

the feature maps for those inputs allows us to understand what 

features the CNN detects in both cases of ordering and no-

ordering. Moreover, that also allows us to see if ordering can 

help the CNN model learns better the discriminative features in 

locating the buggy statements. To do so, for each of those bugs, 

we used the CNN model as part of Base and Order to produce 

two feature maps: one corresponds to Base (no ordering) 

and one to Order. We then visualized and compared those 

feature maps as gray-scale images. The CNN model generates 

9 feature maps as the output from 9 convolutional cores.

In all the bugs, we observe the same phenomenon. Let us 

take an example. Fig. 10 shows two feature maps for one 

of those bugs. The left image is for Base (without ordering), 

and the right one is for Order (with ordering). We zoom 

out the leftmost columns in the right feature map. The row 

corresponding to the buggy line is in the red rectangle. With 

ordering, one of those 9 feature maps has visually darker lines 

around the buggy statement. In contrast, without ordering, all 

the feature maps are similar to the one on the left, i.e., do not 

show any clear visual lines. In brief, with ordering, the CNN 

model, which focuses on the relations of neighboring cells, 

can detect the features along the buggy statement.

4) RQ4-Results (Impact Analysis of Learning Represen-
tations): Table V shows that our representation learning has 

positive contributions. Comparing {Base} with {Base+ New- 
MutMatrix}, we can see that mutation-based matrices can help 

locate 23 more bugs using Top-1 and improve MFR and MAR 

by 8  .2% and 3.5%. By adding code representation learning, 

we improve DEEPRL4FL to localize 9 more bugs and gain an 

increase on MFR and MAR by 7.9% and 4.0%, respectively. 

Furthermore, TextSim also positively contributes to our model. 

For statement-level FL, code representation is also useful, 

improving Top-1 from 65 to 71 bugs, i.e., 9.2% (not shown).

5) RQ5-Results (Cross-project Analysis): As seen in Ta-

ble VI, DEEPRL4FL achieves better results in the within- 

project setting than in the cross-project one. This is expected 

as the training and testing data is from the same project in the 

within-project setting, thus a model may see similar faults.

In the cross-project setting, DEEPRL4FL correctly de-

tects 217 bugs at Top-1 in comparison with the best result 

(207 bugs) from the baselines. In the within-project setting, 

DEEPRL4FL correctly detects 230 bugs at Top-1 in compar-

ison with 80/160/156/213 bugs (not shown) from the baseline 

models MULTRIC/FLUCCS/TraPT/DeepFL, respectively. 

Time Complexity. On average, training time is 350-380 

minutes per project in the cross-project setting, and 120-130 

minutes per project in the within-project setting. Once the 

model is trained, the prediction time per fault is 2-7 seconds 

in both the cross- and within-project settings.
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TABLE V: RQ4. Results of Learning Representations in

Method-level FL. P% = |Top-1|/{395 Bugs}

Variants Top-1 P% M FR M A R

B ase (N ew SpecM atrix) 189 47.8% 8.09 9.91

Base+N ew M utM atrix 212 53.7% 7.43 9.56

Base+N ew M utM atrix+C odeR ep 221 55.9% 6.84 9.18

B ase+N ew M utM atrix+C odeR ep+TextSim  (D e e p R L 4 F L ) 245 62.0% 5.94 8.57

TABLE VI: RQ5. Cross-project versus Within-project Results

Projects
Cross-project Within-project

Top-1 P% MFR MAR Top-1 P% MFR MAR
Chart 13 50.0% 3.15 5.62 15 57.7% 2.85 4.65
Time 13 48.1% 9.78 14.70 14 51.9% 8.41 13.33
Math 61 57.5% 3.81 4.88 64 60.4% 2.93 4.83

Closure 71 53.4% 11.70 15.23 73 54.9% 9.38 12.37
Mockito 12 31.6% 11.42 16.42 14 36.8% 9.39 15.11

Lang 47 72.3% 2.13 2.49 50 76.9% 1.97 2.31

6) RQ6-Results (Performance on C Code): As seen in Ta-

ble VII, DEEPRL4FL can localize 27 faulty statements and 98 

faulty methods with only Top-1 statements and methods. The 

empirical results show that the performance of DEEPRL4FL 

on the C projects is consistent with the one on the Java 

projects. Specifically, at the statement level, the percentages 

of the total C and Java bugs that can be localized are similar, 

i.e., 14.6% vs. 18.0%, respectively. At the method level, the 

percentages of the total C and Java bugs that can be localized 

are also consistent, i.e., 53.0% vs. 62.0%, respectively.

7) Threats to Validity: i) Baseline implementation. For 

comparative study, we implemented Ochiai, Dstar, MUSE, 

Metallaxis, and RBF-neural-network for statement-level FL. 

We followed the paper [27] to implement MUSE and Metal-

laxis using PIT-1.1.5. RBF-neural-network approach is built 

for artificial faults and our real bug dataset cannot match the 

requirements. ii) Result generalization. Our comparisons with 

the baselines were only carried out on the Defects4J dataset. 

Further evaluation on other datasets should be done.

8) Limitations: The quality of test cases is important for our 

approach. If there are only a couple of passing test cases or the 

crash occurs far apart from the faulty method, DEEPRL4FL 

does not learn a useful representation matrix to localize the 

faults. It does not work well on locating the faults that require 

statement additions to fix (all of the baselines in this paper do 

not either). Moreover, it does not work well for short methods, 

as they provide less statement dependencies. It is also hard for 

our model to localize the uncommon faults. Because it is DL- 

based, if there is a very uncommon fault that may not be seen 

in the training dataset, it will not work correctly.

X. Re l a t e d  W o r k

Fault Localization (FL). The Spectrum-based Fault Local-

ization (SBFL), e.g., [6 ], [7], [21], [22], [30], [31], [36], [51], 

[54], has been intensively studied in the literature. Tarantula 

[20], SBI [30], Ochiai [6 ] and Jaccard [7], they share the 

same basic insight, i.e., code elements mainly executed by 

failed tests are more suspicious. The Mutation-based Fault 

Localization (MBFL), e.g., [17], [33], [35], [55], [56], aims 

to additionally consider mutated code in fault localization. 

The examples of MBFL are Metallaxis [37], [38] and MUSE

TABLE VII: RQ6 . ManyBugs (C Projects) versus Defects4J 

(Java Projects). P% = |Top-1|/{Total Bugs in Datasets}

Level
ManyBugs (C projects) Defects4J (Java projects)

Top-1 P% MFR MAR Top-1 P% MFR MAR
Statement 27 14.6% 25.74 31.33 71 18.0% 20.32 28.63
Method 98 53.0% 6.91 9.89 245 62.0% 5.94 8.57

[33]. Learning-to-Rank (LtR) has been used to improve fault 

localization [12], [28], [43], [52]. MULTRIC [52] combines 

different suspiciousness values from SBFL. Some work com-

bines SBFL suspiciousness values with other information, e.g., 

program invariant [1 2 ] and source code complexity informa-

tion [43], for more effective LtR in FL. TraPT [28] combines 

suspiciousness values from both SBFL and MBFL. Neural 

networks have been applied to fault localization [16], [50], 

[58], [60]. However, they mainly work on the test coverage 

summarization scores, which has clear limitations (e.g., it can-

not distinguish elements covered by both failing and passing 

test cases) [28], and are usually studied on artificial faults 

or small programs. DeepFL [27] was shown to improve the 

method-level FL approach TraPT [28]. DEEPRL4FL is also 

related to CNN-FL [57], which feeds the original coverage 

matrix with passing/failing information into a CNN model. 

CNN-FL is theoretically equivalent to Base model in Table IV, 

without any matrix enhancements, test cases ordering, state-

ment dependencies, and code representations.

Code Representation Learning (CRL). The recent success 

in machine learning has lead to much interest in apply-

ing machine learning, especially deep learning, to program 

analysis and software engineering tasks, such as automated 

correction for syntax errors [14], spreadsheet errors detec-

tion [13], [40], fuzz testing [39], program synthesis [11], 

code clones [46], [41], [26], program summarization [8 ], [34], 

code similarity [10], [59], probabilistic model for code [15], 

and path-based code representation, e.g., Code2Vec [10] and 

Code2Seq [9]. All the approaches learn code representations 

using different program properties. However, none of the 

existing fault localization techniques has performed direct code 

modeling and learning on code coverage information of the 

test cases for the FL purpose as in DEEPRL4FL.

XI. Co n c l u s i o n

We propose a deep learning based fault localization (FL) 

approach, DEEPRL4FL, to improve existing FL approaches. 

The key ideas include (1) treating the FL problem as the 

image recognition; (2 ) enhancing code coverage matrix by 

modeling the relations among statements and failing test cases; 

(3) combining code coverage representation learning with 

statement dependencies, and the code representation learning 

for usual suspicious code. Our empirical evaluation shows that 

our model advances the state-of-the-art baseline approaches.
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